期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:490
Noncommutative rational functions invariant under the action of a finite solvable group
Article
Klep, Igor1  Pascoe, James Eldred2  Podlogar, Gregor3  Volcic, Jurij4 
[1] Univ Ljubljana, Fac Math & Phys, Dept Math, Ljubljana, Slovenia
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
[4] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词: Noncommutative rational function;    Invariant field;    Group representation;    Positive rational function;   
DOI  :  10.1016/j.jmaa.2020.124341
来源: Elsevier
PDF
【 摘 要 】

This paper describes the structure of invariant skew fields for linear actions of finite solvable groups on free skew fields in dgenerators. These invariant skew fields are always finitely generated, which contrasts with the free algebra case. For abelian groups or solvable groups Gwith a well-behaved representation theory it is shown that the invariant skew fields are free on vertical bar G vertical bar(d - 1) + 1generators. Finally, positivity certificates for invariant rational functions in terms of sums of squares of invariants are presented. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_124341.pdf 437KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:1次