期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:263
Injectivity sets for spherical means on the Heisenberg group
Article
Narayanan, EK ; Thangavelu, S
关键词: Fourier transform;    Heisenberg group;    heat equation;    spherical means;    Laguerre functions;    unitary group;    spherical harmonics;    sub-Laplacian;    unitary representations;    Weyl transform;   
DOI  :  10.1006/jmaa.2001.7636
来源: Elsevier
PDF
【 摘 要 】

In this paper we prove that cylinders of the form Gamma (R) = S-R x R, where S-R is the sphere {z epsilon C-n : \z \ = R}, are injectivity sets for the spherical mean value operator on the Heisenberg group H-n in L-p spaces. We prove this result as a consequence of a uniqueness theorem for the heat equation associated to the sub-Laplacian. A Hecke-Bochner type identity for the Weyl transform proved by D. Geller and spherical harmonic expansions are the main tools used. (C) 2001 Academic Press.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1006_jmaa_2001_7636.pdf 134KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次