期刊论文详细信息
| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:444 |
| Homogeneous affine surfaces: Moduli spaces | |
| Article | |
| Brozos-Vazquez, M.1  Garcia-Rio, E.2  Gilkey, P.3  | |
| [1] Univ A Coruna, Dept Matemat, Escola Politecn Super, Ferrol 15402, Spain | |
| [2] Univ Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain | |
| [3] Univ Oregon, Dept Math, Eugene, OR 97403 USA | |
| 关键词: Ricci tensor; Moduli space; Homogeneous affine surface; | |
| DOI : 10.1016/j.jmaa.2016.07.005 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We analyze the moduli space of non-flat homogeneous affine connections on surfaces. For Type A surfaces, we write down complete sets of invariants that determine the local isomorphism type depending on the rank of the Ricci tensor and examine the structure of the associated moduli space. For Type B surfaces which are not Type A we show the corresponding moduli space is a simply connected real analytic 4-dimensional manifold with second Betti number equal to 1. (C) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2016_07_005.pdf | 1522KB |
PDF