期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:459
The Schwarz lemma at the boundary of the symmetrized bidisc
Article
Tu, Zhenhan1  Zhang, Shuo1 
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
关键词: Boundary Schwarz lemma;    Caratheodory metric;    Holomorphic mappings;    Symmetrized bidisc;   
DOI  :  10.1016/j.jmaa.2017.10.061
来源: Elsevier
PDF
【 摘 要 】

Y The symmetrized bidisc G2 is defined by G(2) := {(z(1) + z(2), z(1)z(2)) is an element of C-2 : vertical bar z(1)vertical bar < 1, vertical bar z(2)vertical bar < 1, z(1), z(2) is an element of C}. It is a bounded inhomogeneous pseudoconvex domain without Cl boundary, and especially the symmetrized bidisc hasn't any strongly pseudoconvex boundary point and the boundary behavior of both Caratheodory and Kobayashi metrics over the symmetrized bidisc is hard to describe precisely. In this paper, we study the boundary Schwarz lemma for holomorphic self-mappings of the symmetrized bidisc G2, and our boundary Schwarz lemma in the paper differs greatly from the earlier related results. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2017_10_061.pdf 990KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次