期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:470
Oscillation constants for Euler type differential equations involving the p(t)-Laplacian
Article
Fujimoto, Kodai1  Yamaoka, Naoto1 
[1] Osaka Prefecture Univ, Dept Math Sci, Sakai, Osaka 5998531, Japan
关键词: Oscillation theory;    Oscillation constant;    p(t)-Laplacian;    Half-linear differential equation;    Riccati technique;   
DOI  :  10.1016/j.jmaa.2018.10.063
来源: Elsevier
PDF
【 摘 要 】

This paper deals with the oscillation problem for the nonlinear differential equation (vertical bar x'vertical bar(p(t)-2)x')' + lambda/t(p(t))vertical bar x vertical bar(p(t)-2)x = 0, where lambda is a positive parameter and p(t) > 1 is a nondecreasing and smooth function. Some (non)oscillation criteria are given for this equation. The obtained results are the best possible in a certain sense. We use the Riccati technique and the function sequence technique. Moreover, we propose a conjecture concerning the oscillation problem for this equation in the case when p(t) tends to infinity as t -> infinity. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2018_10_063.pdf 308KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:1次