期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:389
Decay rates for a class of diffusive-dominated interaction equations
Article
Canizo, Jose A.1  Carrillo, Jose A.1  Schonbek, Maria E.2 
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Bellaterra, Spain
[2] UC Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
关键词: Aggregation;    Diffusion;    Asymptotic behavior;    Entropy methods;   
DOI  :  10.1016/j.jmaa.2011.12.006
来源: Elsevier
PDF
【 摘 要 】

We analyse qualitative properties of the solutions to a mean-field equation for particles interacting through a pairwise potential while diffusing by Brownian motion. Interaction and diffusion compete with each other depending on the character of the potential. We provide sufficient conditions on the relation between the interaction potential and the initial data for diffusion to be the dominant term. We give decay rates of Sobolev norms showing that asymptotically for large times the behavior is then given by the heat equation. Moreover, we show an optimal rate of convergence in the L-1-norm towards the fundamental solution of the heat equation. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2011_12_006.pdf 244KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次