期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:446
On rational matrix exact covering systems of Zn and its applications to Ramanujan's forty identities
Article
Cao, Zhu1  Hu, Yong2 
[1] Kennesaw State Univ, Dept Math, Marietta, GA 30060 USA
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
关键词: Covering systems;    q-series;    Theta functions;    Rogers-Ramanujan functions;   
DOI  :  10.1016/j.jmaa.2016.08.051
来源: Elsevier
PDF
【 摘 要 】

For a nonsingular integer matrix B, the set of cosets of the quotient module ZnP3Zn forms an exact covering system (ECS) of Z(n). In this paper, we use the Smith normal form to obtain another type of matrix ECS with rational entries which we call rational matrix ECS. Using rational matrix ECS of Z(2), we prove eight identities in Ramanujan's list of forty identities for the Rogers-Ramanujan functions, as well as some other identities. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2016_08_051.pdf 310KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:1次