期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:478
A simplified and unified generalization of some majorization results
Article
Moein, Shirin1,2  Pereira, Rajesh2  Plosker, Sarah2,3 
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
[2] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[3] Brandon Univ, Dept Math & Comp Sci, Brandon, MB R7A 6A9, Canada
关键词: Matrix majorization;    Multivariate majorization;    Sublinear functionals;    Convex functionals;    Stochastic operators;    Markov operators;   
DOI  :  10.1016/j.jmaa.2019.05.065
来源: Elsevier
PDF
【 摘 要 】

We consider positive, integral-preserving linear operators acting on L-1 space, known as stochastic operators or Markov operators. We show that, on finite-dimensional spaces, any stochastic operator can be approximated by a sequence of stochastic integral operators (such operators arise naturally when considering matrix majorization in L-1). We collect a number of results for vector-valued functions on L-1, simplifying some proofs found in the literature. In particular, matrix majorization and multivariate majorization are related in R-n. In R, these are also equivalent to convex function inequalities. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_05_065.pdf 342KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次