期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:498
Global estimates in Sobolev spaces for homogeneous Hormander sums of squares
Article
Biagi, Stefano1  Bonfiglioli, Andrea2  Bramanti, Marco1 
[1] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
[2] Univ Bologna, Alma Mater Studiorum, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy
关键词: A priori estimates;    Sobolev spaces;    Regularity of solutions;    Interpolation inequalities;   
DOI  :  10.1016/j.jmaa.2021.124935
来源: Elsevier
PDF
【 摘 要 】

Let L = Sigma(m)(j=1) X-j(2) be a Hormander sum of squares of vector fields in space R-n, where any X-j is homogeneous of degree 1 with respect to a family of non-isotropic dilations in space. In this paper we prove global estimates and regularity properties for L in the X-Sobolev spaces W-X(k,p) (R-n), where X = {X-1, ... , X-m}. In our approach, we combine local results for general Hormander sums of squares, the homogeneity property of the X-j's, plus a global lifting technique for homogeneous vector fields. (C) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2021_124935.pdf 428KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次