期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:320
Positive definite matrices and differentiable reproducing kernel inequalities
Article
Buescu, Jorge ; Paixao, A. C.
关键词: positive definite matrices;    reproducing kernels;    inequalities;   
DOI  :  10.1016/j.jmaa.2005.06.088
来源: Elsevier
PDF
【 摘 要 】

Let I subset of R be a interval and k: I-2 -> C be a reproducing kernel on I. By the Moore-Aronszajn theorem, every finite matrix k(x(i), x(j)) is positive semidefinite. We show that, as a direct algebraic consequence, if k(x, y) is appropriately differentiable it satisfies a 2-parameter family of differential inequalities of which the classical diagonal dominance is the order 0 case. An application of these inequalities to kernels of positive integral operators yields optimal Sobolev norm bounds. (c) 2005 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2005_06_088.pdf 148KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次