JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:325 |
Ill-posed problems with unbounded operators | |
Article | |
Ramm, A. G. | |
关键词: unbounded operators; ill-posed problems; variational regularization; | |
DOI : 10.1016/j.jmaa.2006.02.004 | |
来源: Elsevier | |
【 摘 要 】
Let A be a linear, closed, densely defined unbounded operator in a Hilbert space. Assume that A is not boundedly invertible. If Eq. (1) Au = f is solvable, and vertical bar vertical bar f(delta) - f vertical bar vertical bar <= delta, then the following results are provided: Problem F-delta (u) := vertical bar vertical bar Au - f(delta)vertical bar vertical bar(2) + alpha vertical bar vertical bar u vertical bar vertical bar(2) has a unique global minimizer u(alpha,delta) for any f(delta), u(alpha,delta) = A* (AA* + alpha 1)(-1)f(delta). There is a function alpha = alpha (delta), lims(delta -> 0)alpha(delta) = 0 such that lims(delta -> 0)vertical bar vertical bar u(alpha(delta).delta) - y vertical bar vertical bar = 0, where y is the unique minimal-norm solution to (1). A priori and a posteriori choices of alpha(delta) are given. Dynamical Systems Method (DSM) is justified for Eq. (1). (c) 2006 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2006_02_004.pdf | 112KB | download |