期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:396
l-selection principles for sequences of functions
Article
Filipow, Rafal1  Mrozek, Nikodem1  Reclaw, Ireneusz2  Szuca, Piotr1 
[1] Univ Gdansk, Inst Math, PL-80952 Gdansk, Poland
[2] Univ Gdansk, Inst Informat, PL-80952 Gdansk, Poland
关键词: Bolzano-Weierstrass property;    Ideal convergence;    Selection principle;    Bounded function sequence;    Arzela-Ascoli theorem;    Helly's theorem;    Mazurkiewicz's theorem;   
DOI  :  10.1016/j.jmaa.2012.06.050
来源: Elsevier
PDF
【 摘 要 】

We generalize three classical selection principles (Arzela-Ascoli theorem, Mazurkiewicz's theorem and Helly's theorem) on the ideal convergence. In particular, we show that for every analytic P-ideal l with the BW property (and every Fa ideal 1) the following selection theorems hold: If < f(n)>(n) is a sequence of uniformly bounded equicontinuous functions on [0, 1] then there exists A is not an element of l such that < f(n)>(n epsilon A) is uniformly convergent; if < f(n)>(n) is a sequence of uniformly bounded continuous functions then there exists a perfect set P and a set A is not an element of l such that < f(n) vertical bar P >(n epsilon A) is pointwise convergent; if < f(n)>(n) is a sequence of uniformly bounded monotone functions then there exists a set A is not an element of l such that < f(n)>(n epsilon A) is pointwise convergent. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2012_06_050.pdf 247KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次