期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:416
Eigenfunctions of the weighted Laplacian and a vanishing theorem on gradient steady Ricci soliton
Article
Nguyen Thac Dung1  Nguyen Thi Le Hai2  Nguyen Thi Thanh3 
[1] Hanoi Univ Sci, Dept Math Mech & Informat MIM, Hanoi, Vietnam
[2] Hanoi Univ Civil Engn, Dept Informat Technol, Hanoi, Vietnam
[3] Tran Phu High Sch Gifted, Hai Phong City, Vietnam
关键词: Bakry-Emery curvature;    Eigenvalues;    Eigenfunctions;    Gradient steady Ricci soliton;    Smooth metric measure spaces;   
DOI  :  10.1016/j.jmaa.2014.02.054
来源: Elsevier
PDF
【 摘 要 】

The aim of this note has two folds. First, we show a gradient estimate of the higher eigenfunctions of the weighted Laplacian on smooth metric measure spaces. In the second part, we consider a gradient steady Ricci soliton and prove that there exists a positive constant c(n) depending only on the dimension n of the soliton such that there is no nontrivial harmonic 1-form (hence harmonic function) which is in L-P on such a soliton for any 2 < c(n). (c) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2014_02_054.pdf 257KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:2次