期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:458
Classification of δ(2, n-2)-ideal Lagrangian submanifolds in n-dimensional complex space forms
Article
Chen, Bang-Yen1  Dillen, Franki2  Van der Veken, Joeri2  Vrancken, Luc2,3 
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200 B,Box 2400, BE-3001 Leuven, Belgium
[3] Univ Valenciennes, LAMAV, ISTV2, Campus Mt Houy, F-59313 Valenciennes 9, France
关键词: Lagrangian submanifold;    optimal inequality;    delta-invariant;    ideal submanifold;   
DOI  :  10.1016/j.jmaa.2017.10.044
来源: Elsevier
PDF
【 摘 要 】

It was proven in [4] that every Lagrangian submanifold M of a complex space form (M) over tilde (n)(4c) of constant holomorphic sectional curvature 4c satisfies the following optimal inequality: delta(2, n - 2) <= n(2)(n - 2)/4(n - 1) H-2 + 2(n - 2)c, where H-2 is the squared mean curvature and delta(2, n - 2) is a S-invariant on M. In this paper we classify Lagrangian submanifolds of complex space forms (M) over tilde (n)(4c), n >= 5, which satisfy the equality case of this improved inequality at every point. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2017_10_044.pdf 1527KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:0次