期刊论文详细信息
| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:486 |
| On preserving the limit points of corresponding objects | |
| Article | |
| Klesov, O. I.1  Steinebach, J. G.2  | |
| [1] Natl Tech Univ Ukraine, Igor Sikorsky Kyiv Polytech Inst, Dept Math Anal & Probabil Theory, Peremogy Ave 37, UA-03056 Kiev, Ukraine | |
| [2] Univ Cologne, Dept Math Informat, Weyertal 86-90, D-50931 Cologne, Germany | |
| 关键词: Regularly varying functions; Slowly varying functions; Functions preserving the asymptotic equivalence; Corresponding objects; Set of limit points; | |
| DOI : 10.1016/j.jmaa.2020.123916 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Suppose that, for two given sequences {a(n)} and {b(n)}, lim inf(n ->infinity) b(n)/a(n) = 1 and let a function f be given. What can then be said about the limit behavior of the corresponding ratio f(b(n))/f(a(n)) as n -> infinity ? In general, no definite answer can be given to this question. We study a case where a definite answer is possible, namely the case of a regularly varying function f of nonzero order. (C) 2020 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2020_123916.pdf | 312KB |
PDF