期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:486
On preserving the limit points of corresponding objects
Article
Klesov, O. I.1  Steinebach, J. G.2 
[1] Natl Tech Univ Ukraine, Igor Sikorsky Kyiv Polytech Inst, Dept Math Anal & Probabil Theory, Peremogy Ave 37, UA-03056 Kiev, Ukraine
[2] Univ Cologne, Dept Math Informat, Weyertal 86-90, D-50931 Cologne, Germany
关键词: Regularly varying functions;    Slowly varying functions;    Functions preserving the asymptotic equivalence;    Corresponding objects;    Set of limit points;   
DOI  :  10.1016/j.jmaa.2020.123916
来源: Elsevier
PDF
【 摘 要 】

Suppose that, for two given sequences {a(n)} and {b(n)}, lim inf(n ->infinity) b(n)/a(n) = 1 and let a function f be given. What can then be said about the limit behavior of the corresponding ratio f(b(n))/f(a(n)) as n -> infinity ? In general, no definite answer can be given to this question. We study a case where a definite answer is possible, namely the case of a regularly varying function f of nonzero order. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_123916.pdf 312KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次