期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:494
Negative results for approximation using single layer and multilayer feedforward neural networks
Article
Almira, J. M.1  Lopez-de-Teruel, P. E.1  Romero-Lopez, D. J.1  Voigtlaender, F.2 
[1] Univ Murcia, Dept Ingn & Tecnol Comp, Murcia 30100, Spain
[2] Catholic Univ Eichstatt Ingolstadt, Dept Sci Comp, D-85072 Eichstatt, Germany
关键词: Lethargy results;    Rate of convergence;    Approximation by neural networks;    Ridge functions;    Rational functions;    Splines;   
DOI  :  10.1016/j.jmaa.2020.124584
来源: Elsevier
PDF
【 摘 要 】

We prove a negative result for the approximation of functions defined on compact subsets of R-d (where d >= 2) using feedforward neural networks with one hidden layer and arbitrary continuous activation function. In a nutshell, this result claims the existence of target functions that are as difficult to approximate using these neural networks as one may want. We also demonstrate an analogous result (for general d is an element of N) for neural networks with an arbitrary number of hidden layers, for activation functions that are either rational functions or continuous splines with finitely many pieces. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_124584.pdf 376KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次