期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:399
Persistence and extinction in spatial models with a carrying capacity driven diffusion and harvesting
Article
Korobenko, L.1  Kamrujjaman, Md.1  Braverman, E.1 
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
关键词: Diffusion;    Harvesting;    Positive periodic solution;    Global attractivity;    Rate of convergence;    Logistic law;    Gilpin-Ayala growth;    Gompertz function;    Maximal yield;   
DOI  :  10.1016/j.jmaa.2012.09.057
来源: Elsevier
PDF
【 摘 要 】

For the reaction-diffusion equation partial derivative u(t, x)/partial derivative t = D Delta (u(t, x)/K(t, x)) + r(t, x)u(t, x)g (K(t, x), u(t, x)) - E(t, x)u(t, x) with the general type of growth, diffusion stipulated by the carrying capacity K and harvesting, existence, positivity, persistence, extinction and stability of solutions are investigated. In numerical simulations, the results are compared to the model with a regular diffusion. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2012_09_057.pdf 707KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次