期刊论文详细信息
| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:435 |
| Koshliakov kernel and identities involving the Riemann zeta function | |
| Article | |
| Dixit, Atul1  Robles, Nicolas2  Roy, Arindam3  Zaharescu, Alexanchu3,4  | |
| [1] Tulane Univ, Dept Math, New Orleans, LA 70118 USA | |
| [2] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland | |
| [3] Univ Illinois, Dept Math, Urbana, IL 61801 USA | |
| [4] Romanian Acad, Inst Math, RO-70700 Bucharest, Romania | |
| 关键词: Riemann zeta function; Hurwitz zeta function; Bessel functions; Koshliakov; | |
| DOI : 10.1016/j.jmaa.2015.11.007 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Some integral identities involving the Riemann zeta function and functions reciprocal in a kernel involving the Bessel functions J(z)(x), Y-z(x) and K-z(x) are studied. Interesting special cases of these identities are derived, one of which is connected to a well-known transformation due to Ramanujan, and Guinand. Published by Elsevier Inc.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2015_11_007.pdf | 516KB |
PDF