期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:343
Strong convergence theorems for maximal monotone mappings in Banach spaces
Article
Zegeye, Habtu
关键词: convex minimization problem;    maximal monotone mappings;    normalized duality mappings;    resolvents;    smooth;    uniformly smooth and uniformly convex Banach spaces;   
DOI  :  10.1016/j.jmaa.2008.01.076
来源: Elsevier
PDF
【 摘 要 】

Let E be a uniformly convex and 2-uniformly smooth real Banach space with dual E*. Let A: E* -> E be a Lipschitz continuous monotone mapping with A(-1) (0) not equal 0. For given u, x(1) is an element of E, let {x(n)} be generated by the algorithm x(n+1) := beta(n)u + (1-beta(n)) x (x(n) -alpha(n)AJ x(n)), n >= 1, where J is the normalized duality mapping from E into E* and {lambda(n)} and {0(n)} are real sequences in (0, 1) satisfying certain conditions. Then it is proved that, under some mild conditions, {x(n)} converges strongly to x* is an element of E where Jx* is an element of A(-1)(0). Finally, we apply our convergence theorems to the convex minimization problems. (c) 2008 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2008_01_076.pdf 154KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:1次