期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:369
Regularity for a fourth-order critical equation with gradient nonlinearity
Article
Fabbri, Isabella
关键词: Biharmonic equation;    Gradient nonlinearity;    Regularity;   
DOI  :  10.1016/j.jmaa.2010.02.040
来源: Elsevier
PDF
【 摘 要 】

Given Omega a smooth bounded domain of R(n), n >= 3, we consider functions u is an element of H(2.0)(2)(Omega) that are weak solutions to the equation Delta(2)u + au = -div(f/vertical bar x vertical bar(s)vertical bar del u vertical bar(2)*(-2)del u) in Omega, where 2* := 2(n-s)/n-2, S is an element of [0,2) and a, f is an element of C(infinity)((Omega) over bar )In this article, we prove the maximal regularity of solutions to the above equation, depending on the value of s is an element of [0,2) and the relative position of Omega with respect to the origin. In particular, the solutions are in C(4)((Omega) over bar) when s = 0. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2010_02_040.pdf 207KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次