期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:388
Shapiro's Theorem for subspaces
Article
Almira, J. M.1  Oikhberg, T.2,3 
[1] Univ Jaen, Dept Matemat, EPS Linares, Linares 23700, Jaen, Spain
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词: Approximation scheme;    Approximation error;    Approximation with restrictions;    Bernstein's Lethargy Theorem;    Shapiro's Theorem;   
DOI  :  10.1016/j.jmaa.2011.09.054
来源: Elsevier
PDF
【 摘 要 】

In the previous paper (Almira and Oikhberg. 2010 [4]), the authors investigated the existence of an element x of a quasi-Banach space X whose errors of best approximation by a given approximation scheme (A(n)) (defined by E(x, A(n)) = inf(a is an element of An) parallel to x - a(n)parallel to) decay arbitrarily slowly. In this work, we consider the question of whether x witnessing the slowness rate of approximation can be selected in a prescribed subspace of X. In many particular cases, the answer turns out to be positive. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2011_09_054.pdf 376KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次