期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:398 |
Semi local convergence of secant-like methods for differentiable and nondifferentiable operator equations | |
Article | |
Ezquerro, J. A.1  Grau-Sanchez, M.2  Hernandez, M. A.1  Noguera, M.2  | |
[1] Univ La Rioja, Dept Math & Computat, Logrono 26004, Spain | |
[2] Tech Univ Catalonia, Dept Appl Math 2, Barcelona 08034, Spain | |
关键词: Nonlinear equations; Divided difference; Iterative method; The secant method; Kurchatov's method; Order of convergence; Computational efficiency; Conservative problem; | |
DOI : 10.1016/j.jmaa.2012.08.040 | |
来源: Elsevier | |
【 摘 要 】
From well-known secant-like methods, we observe that we can construct a new family of secant-like methods that includes the secant method and Kurchatov's method. We analyse the local orders of convergence and the efficiencies of the methods of the family and study the semilocal convergence for differentiable and nondifferentiable operators. Finally, we apply our results to conservative problems. (C) 2012 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2012_08_040.pdf | 306KB | download |