期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:427
Parabolic BMO estimates for pseudo-differential operators of arbitrary order
Article
Kim, Ildoo1  Kim, Kyeong-Hun1  Lim, Sungbin1 
[1] Korea Univ, Dept Math, Seoul 136701, South Korea
关键词: Parabolic BMO estimate;    L-p-estimate;    Pseudo-differential operator;    Non-local operator;   
DOI  :  10.1016/j.jmaa.2015.02.065
来源: Elsevier
PDF
【 摘 要 】

In this article we prove the BMO-L-infinity estimate parallel to(-Delta)(gamma/2)u parallel to(BMO(Rd+1)<=) N parallel to partial derivative/partial derivative tu - A(t) u parallel to(L infinity (Rd+1)), for all u is an element of C-G(infinity) (Rd+1) for a wide class of pseudo-differential operators A(1) of order gamma is an element of (0, infinity). The coefficients of A(t) are assumed to be merely measurable in time variable. As an application to the equation partial derivative/partial derivative t u=A(t) u +f, t is an element of R we prove that for any u is an element of C-G(infinity) (Rd+1) parallel to u(t)parallel to(Lp)(Rd+1) + parallel to(-Delta)(gamma/2) u parallel to L-p(Rd+1)<= N parallel to u(t) - A(t)u parallel to L-p(Rd+1), where p is an element of (1, infinity) and the constant N is independent of u. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2015_02_065.pdf 414KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次