期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:354
On the Laplace equation with dynamical boundary conditions of reactive-diffusive type
Article
Luis Vazquez, Juan2  Vitillaro, Enzo1 
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[2] Univ Autonoma Madrid, Dpto Matemat, E-28049 Madrid, Spain
关键词: Laplace equation;    Dynamical boundary conditions;    Reactive terms;   
DOI  :  10.1016/j.jmaa.2009.01.023
来源: Elsevier
PDF
【 摘 要 】

This paper deals with the Laplace equation in a bounded regular domain Omega of R-N (N >= 2) coupled with a dynamical boundary condition of reactive-diffusive type. In particular we Study the problem {Delta u = 0 in (0, infinity) x Omega, ut = ku(nu) + l Delta(Gamma)u on (0, infinity) x Gamma. u(0, x) = u(0)(x) on Gamma. where u = u (t, x), t >= 0, x is an element of Omega, Gamma = partial derivative Omega, Delta = Delta(x) denotes the Laplacian operator with respect to the space variable, while Delta(Gamma) denotes the Laplace-Beltrami operator on Gamma, nu is the outward normal to Omega, and k and l are given real constants. Well-posedness is proved for any given initial distribution u(0) on Gamma, together with the regularity of the solution. Moreover the Fourier method is applied to represent it in term of the eigenfunctions of a related eigenvalue problem. (C) 2009 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2009_01_023.pdf 265KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次