期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:499 |
Well-posedness for a system of quadratic derivative nonlinear Schrodinger equations in almost critical spaces | |
Article | |
Hirayama, Hiroyuki1  Kinoshita, Shinya2  Okamoto, Mamoru3  | |
[1] Univ Miyazaki, Fac Educ, 1-1 Gakuenkibanadai Nishi, Miyazaki 8892192, Japan | |
[2] Univ Bielefeld, Fak Math, Postfach 10 01 31, D-33501 Bielefeld, Germany | |
[3] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan | |
关键词: Schrodinger equation; Well-posedness; Cauchy problem; Bilinear estimate; | |
DOI : 10.1016/j.jmaa.2021.125028 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we consider the Cauchy problem of the system of quadratic derivative nonlinear Schrodinger equations introduced by Colin and Colin (2004). We determine an almost optimal Sobolev regularity where the smooth flow map of the Cauchy problem exists, except for the scaling critical case. This result covers a gap left open in papers of the first and second authors (2014, 2019). (C) 2021 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2021_125028.pdf | 552KB | download |