期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:499
Well-posedness for a system of quadratic derivative nonlinear Schrodinger equations in almost critical spaces
Article
Hirayama, Hiroyuki1  Kinoshita, Shinya2  Okamoto, Mamoru3 
[1] Univ Miyazaki, Fac Educ, 1-1 Gakuenkibanadai Nishi, Miyazaki 8892192, Japan
[2] Univ Bielefeld, Fak Math, Postfach 10 01 31, D-33501 Bielefeld, Germany
[3] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词: Schrodinger equation;    Well-posedness;    Cauchy problem;    Bilinear estimate;   
DOI  :  10.1016/j.jmaa.2021.125028
来源: Elsevier
PDF
【 摘 要 】

In this paper, we consider the Cauchy problem of the system of quadratic derivative nonlinear Schrodinger equations introduced by Colin and Colin (2004). We determine an almost optimal Sobolev regularity where the smooth flow map of the Cauchy problem exists, except for the scaling critical case. This result covers a gap left open in papers of the first and second authors (2014, 2019). (C) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2021_125028.pdf 552KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次