期刊论文详细信息
JOURNAL OF INVESTIGATIVE DERMATOLOGY 卷:106
Imposition of a physiologic DC electric field alters the migratory response of human keratinocytes on extracellular matrix molecules
Article
Sheridan, DM ; Isseroff, RR ; Nuccitelli, R
关键词: galvanotaxis;    motility;    wound healing;    collagen;   
DOI  :  10.1111/1523-1747.ep12345456
来源: Elsevier
PDF
【 摘 要 】

Outwardly directed ionic currents have been measured leaving skin wounds in vivo. These currents generate physiologic electric fields of approximately 100 mV/mm, which may function to direct keratinocyte migration toward the healing wound, We investigated whether the substrate on which the keratinocyte migrates modulates the galvanotactic response to an electric migratory signal, Cultured human keratinocytes were plated on different matrices: types I and IV collagen, fibronectin, laminin, and tissue culture plastic. The effect of an applied direct current (DC) electric field on directional migration was monitored by time-lapse video microscopy over a 2-h period. Directionality was quantitated by calculating the cosine of the angle of migration in relation to anodal-cathodal orientation. Migration toward the negative pole was observed on all matrices as compared with controls (no applied field), which displayed random migration. No significant increase in directional response occurred when the field strength was increased from 100 mV/mm (physiologic levels) to 400 mV/mm, The degree of directionality and the average net cell translocation, however, varied significantly with the substrate, The greatest cathodal migration in response to a DC electric field was observed with keratinocytes plated on types I and IV collagens and plastic, The directional migratory response was least on a laminin substrate, whereas cells on fibronectin demonstrated a response that was intermediate between those of collagen and laminin. These results suggest that physiologic ionic currents in concert: with the underlying matrix may influence the of skin wounds.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1111_1523-1747_ep12345456.pdf 2080KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次