期刊论文详细信息
JOURNAL OF HYDROLOGY 卷:548
Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles
Article
Bandini, Filippo1  Jakobsen, Jakob2  Olesen, Daniel2  Reyna-Gutierrez, Jose Antonio1  Bauer-Gottwein, Peter1 
[1] Tech Univ Denmark, Dept Environm Engn, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Natl Space Inst, DK-2800 Lyngby, Denmark
关键词: UAV;    Water level;    Radar;    Sonar;    Laser;    GPS;   
DOI  :  10.1016/j.jhydrol.2017.02.038
来源: Elsevier
PDF
【 摘 要 】

The assessment of hydrologic dynamics in rivers, lakes, reservoirs and wetlands requires measurements of water level, its temporal and spatial derivatives, and the extent and dynamics of open water surfaces. Motivated by the declining number of ground-based measurement stations, research efforts have been devoted to the retrieval of these hydraulic properties from spaceborne platforms in the past few decades. However, due to coarse spatial and temporal resolutions, spaceborne missions have several limitations when assessing the water level of terrestrial surface water bodies and determining complex water dynamics. Unmanned Aerial Vehicles (UAVs) can fill the gap between spaceborne and ground-based observations, and provide high spatial resolution and dense temporal coverage data, in quick turnaround time, using flexible payload design. This study focused on categorizing and testing sensors, which comply with the weight constraint of small UAVs (around 1.5 kg), capable of measuring the range to water surface. Subtracting the measured range from the vertical position retrieved by the onboard Global Navigation Satellite System (GNSS) receiver, we can determine the water level (orthometric height). Three different ranging payloads, which consisted of a radar, a sonar and an in-house developed camera-based laser distance sensor (CLDS), have been evaluated in terms of accuracy, precision, maximum ranging distance and beam divergence. After numerous flights, the relative accuracy of the overall system was estimated. A ranging accuracy better than 0.5% of the range and a maximum ranging distance of 60 m were achieved with the radar. The CLDS showed the lowest beam divergence, which is required to avoid contamination of the signal from interfering surroundings for narrow fields of view. With the GNSS system delivering a relative vertical accuracy better than 3-5 cm, water level can be retrieved with an overall accuracy better than 5-7 cm. (C) 2017 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jhydrol_2017_02_038.pdf 1092KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:1次