期刊论文详细信息
JOURNAL OF HYDROLOGY 卷:586
Opportunities and challenges in using catchment-scale storage estimates from cosmic ray neutron sensors for rainfall-runoff modelling
Article
Dimitrova-Petrova, Katya1,2  Geris, Josie1  Wilkinson, Mark E.2  Rosolem, Rafael3  Verrot, Lucile1  Lilly, Allan2  Soulsby, Chris1 
[1] Univ Aberdeen, Sch Geosci, Northern Rivers Inst, Aberdeen, Scotland
[2] James Hutton Inst, Aberdeen, Scotland
[3] Univ Bristol, Dept Civil Engn, Bristol, Avon, England
关键词: Cosmic ray neutron sensor;    Rainfall-runoff modelling;    Storage-discharge relationship;    Managed landscapes;    Catchment hydrology;   
DOI  :  10.1016/j.jhydrol.2020.124878
来源: Elsevier
PDF
【 摘 要 】

Adequate characterization of catchment storage dynamics is crucial in hydrological models, yet scale-representative storage measurements are rare. Recent developments in Cosmic Ray Neutron Sensor (CRNS) technology and monitoring networks provide a powerful source of more scale-appropriate soil moisture data for many modelling applications. However, the potential in rainfall-runoff modelling is undeveloped. Here we present the first application of CRNS data in conceptual rainfall-runoff modelling and explore this potential in the context of a mixed-agricultural landscape in Scotland. We deployed and calibrated a CRNS in a heterogeneous soil-land use footprint over a similar to 3-year period. In this generally wet environment, the CRNS shallow sensing depth and relatively high neutron count uncertainty were identified as major challenges. However, given the better spatial coverage (up to 14 ha) and ease for maintenance, CRNS was thought to represent the simplest approach for long-term monitoring of managed mixed-agricultural sites. We used CRNS-derived, as well as single point-scale estimates, of near-surface soil storage (S-NS) to explore their characterisation of storage dynamics at the catchment-scale. Inter-comparison using linear regression showed that SNs related well to catchment-scale storage dynamics, however this relationship was stronger for CRNS (R-2 = 0.91) compared to point-scale derived estimates (R-2 = 0.76). Based on this, we evaluated the effect of using the CRNS and point scale derived S-NS data to constrain storage estimates controlling runoff generation in a common rainfall-runoff model (HBV-light). Including CRNS or point-scale field S-NS data alone in model calibration was especially useful for intermediate and wet periods. A combined model calibration using discharge and either S-NS storage estimates provided a better representation of catchment internal dynamics, additionally reducing uncertainty during low flows. In the context of mixed-agricultural landscapes in humid environments, this study showed the potential of using CRNS over point scale data (in terms of representativeness for single point data and practicality for point sensor networks) to characterise the catchment storage-discharge relationship and inform hydrological modelling.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jhydrol_2020_124878.pdf 5851KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次