期刊论文详细信息
JOURNAL OF HYDROLOGY 卷:569
Manure application timing drives energy absorption for snowmelt on an agricultural soil
Article
Stock, Melanie N.1  Arriaga, Francisco J.2  Vadas, Peter A.3  Karthikeyan, K. G.4 
[1] Utah State Univ, Dept Plants Soils & Climate, 4820 Old Main Hill, Logan, UT 84321 USA
[2] Univ Wisconsin, Dept Soil Sci, 1525 Observ Dr, Madison, WI 53706 USA
[3] USDA ARS, US Dairy Forage Res Ctr, 1925 Linden Dr, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Biol Syst Engn, 460 Henry Mall, Madison, WI 53706 USA
关键词: Agriculture;    Manure;    Tillage;    Albedo;    Frozen soil;    Snow energy balance;   
DOI  :  10.1016/j.jhydrol.2018.11.028
来源: Elsevier
PDF
【 摘 要 】

Reducing agricultural runoff year-round is important, in particular during snowmelt events on landscapes that receive wintertime applications of manure. To help inform manure guidelines, process-level data are needed that link management scenarios with the complexity of snowmelt, hence runoff. Albedo and radiative energy fluxes are strong drivers of thaw, but applying these mechanistic measurements across multiple, plot-scale management treatments over time presents a logistical challenge. The objective of this study was to first develop a practical field approach to estimate winter albedo in plot-scale field research with multiple management scenarios. The second objective was to quantify the radiative drivers of snowmelt by measuring fluxes after wintertime liquid manure application. Six management treatments were tested in south-central Wisconsin during the winters of 2015-2016 and 2016-2017 with a complete factorial design: three manure application timings (early December, late January, and unmanured) and two tillage treatments (conventional tillage versus notillage). A multiple linear regression model was developed to estimate albedo with digital imagery and readily-obtained site characteristics. Manure timing had a significant effect on radiative energy fluxes and tillage was secondary. January applications of liquid manure produced an immediate and lasting decrease in albedo, which resulted in greater net radiation absorbed by snowpack and subsequent energy available for snowmelt. Later applications of liquid manure accelerated snowmelt, which increased runoff losses and posed a challenge for nutrient retention from the liquid manure during thaw.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jhydrol_2018_11_028.pdf 963KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次