期刊论文详细信息
JOURNAL OF POWER SOURCES 卷:293
Fractional-order modeling and parameter identification for lithium-ion batteries
Article
Wang, Baojin1,2  Li, Shengbo Eben2,3  Peng, Huei2  Liu, Zhiyuan1 
[1] Harbin Inst Technol, Dept Control Sci & Engn, Harbin 150001, Peoples R China
[2] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[3] Tsinghua Univ, Dept Automot Engn, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
关键词: Lithium-ion batteries;    Fractional-order model;    Differentiation order identification;    Electrochemical impedance spectroscopy;    Hybrid multi-swarm particle swarm optimization;   
DOI  :  10.1016/j.jpowsour.2015.05.059
来源: Elsevier
PDF
【 摘 要 】

This paper presents a fractional-order model (FOM) for lithium-ion batteries and its parameter identification using time-domain test data. The FOM is derived from a modified Randles model and takes the form of an equivalent circuit model with free non-integer differentiation orders. The coefficients and differentiation orders of the FOM are identified by hybrid multi-swarm particle swarm optimization. The influence of approximation degree on model accuracy is discussed. Battery datasets under a range of conditions are used to analyze model performance. The accuracy and robustness of the FOM are benchmarked against the commonly used first-order RC equivalent circuit model. (C) 2015 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jpowsour_2015_05_059.pdf 2138KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次