JOURNAL OF POWER SOURCES | 卷:356 |
Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in Bioelectrochemical systems | |
Article | |
de Oliveira, Maida Aysla Costa1  Mecheri, Barbara1  D'Epifanio, Alessandra1  Placidi, Ernesto2,3  Arciprete, Fabrizio2  Valentini, Federica1  Perandini, Alessando4  Valentini, Veronica5  Licoccia, Silvia1  | |
[1] Univ Roma Tor Vergata, Dept Chem Sci & Technol, Via Ric Sci, I-00133 Rome, Italy | |
[2] Univ Roma Tor Vergata, Dept Phys, Via Ric Sci, I-00133 Rome, Italy | |
[3] CNR ISM, Via Fosso del Cavaliere 100, I-00133 Rome, Italy | |
[4] Sapienza Univ Rome, Dept Chem, Piazzale Aldo Moro 2, I-00185 Rome, Italy | |
[5] CNR ISM, Via Salaria Km 29-300, I-00016 Rome, Italy | |
关键词: Graphene oxide; Iron phthalocyanine; Oxygen reduction reaction; Bioelectrochemical systems; | |
DOI : 10.1016/j.jpowsour.2017.02.009 | |
来源: Elsevier | |
【 摘 要 】
We report the development of electrocatalysts based on iron phthalocyanine (FePc) supported on graphene oxide (GO), obtained by electrochemical oxidation of graphite in aqueous solution of LiCI, LiClO4, and NaClO4. Structure, surface chemistry, morphology, and thermal stability of the prepared materials were investigated by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, atomic force microscopy (AFM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The catalytic activity toward oxygen reduction reaction (ORR) at neutral pH was evaluated by cyclic voltammetry. The experimental results demonstrate that the oxidation degree of GO supports affects the overall catalytic activity of FePc/GO, due to a modulation effect of the interaction between FePc and the basal plane of GO. On the basis of electrochemical, spectroscopic, and morphological investigations, FePc/GO_LiCl was selected to be assembled at the cathode side of a microbial fuel cell prototype, demonstrating a good electrochemical performance in terms of voltage and power generation. (C) 2017 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jpowsour_2017_02_009.pdf | 2010KB | download |