| JOURNAL OF NUMBER THEORY | 卷:227 |
| The Hasse invariant of the Tate normal form E5 and the class number of Q(√-5l) | |
| Article | |
| Morton, Patrick1  | |
| [1] Indiana Univ Purdue Univ Indianapolis IUPUI, Dept Math Sci, LD 270, Indianapolis, IN 46202 USA | |
| 关键词: Tate normal form; Hasse invariant; Class number; Class equation; Class field theory; Fricke group; | |
| DOI : 10.1016/j.jnt.2021.03.006 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
It is shown that the number of irreducible quartic factors of the form g(x) = x(4) + ax(3) + (11a+2)x(2) - ax + 1 which divide the Hasse invariant of the Tate normal form E-5 in characteristic lis a simple linear function of the class number h(-5l) of the field Q(root-5l), when l equivalent to 2, 3 modulo 5. A similar result holds for irreducible quadratic factors of g(x), when l equivalent to 1, 4 modulo 5. This implies a formula for the number of linear factors over F-p of the supersingular polynomial ss(p)((5)*()) (x) corresponding to the Fricke group Gamma(0)*(5). (C) 2021 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jnt_2021_03_006.pdf | 746KB |
PDF