期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:125
On Galois structure of the integers in elementary Abelian extensions of local number fields
Article
Miyata, Yoshimasa
关键词: local fields;    free module;    isomorphism classy;    invariant factor;   
DOI  :  10.1016/j.jnt.2006.12.005
来源: Elsevier
PDF
【 摘 要 】

Let p be an odd prime number and k a finite extension of Q(p). Let K/k be a totally ramified elementary abelian Kummer extension of degree p(2) with Galois group G. We determine the isomorphism class of the ring of integers in K as an oG-module under some assumptions. The obtained results imply there exist extensions whose rings are Z(p)G-isomorphic but not oG-isomorphic, where Z(p) is the ring of p-adic integers. Moreover we obtain conditions that the rings of integers are free over the associated orders and give extensions whose rings are not free. (c) 2006 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2006_12_005.pdf 212KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次