期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:143
Integers with a given number of divisors
Article
Chen, Yong-Gao1 
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
关键词: Ordinary integers;    Extraordinary integers;    Square-free integers;    Divisors;   
DOI  :  10.1016/j.jnt.2014.02.023
来源: Elsevier
PDF
【 摘 要 】

Text. For any positive integer n, let n = q(1) . . . q(s) be the prime factorization of n with q(1) >= . . . >= q(s) > 1. A positive integer n is said to be ordinary if the smallest positive integer with exactly n divisors is p(1)(q1-1) . . . p(s)(qs) (-) (1), where P-k denotes the kth prime. Let [x] be the largest integer not exceeding x. In 2006, Brown proved that all square-free integers are ordinary and the set of all ordinary integers has asymptotic density one. In this paper, we prove that, if q([root s]) >= 9(log s)(2), then n is ordinary. Furthermore, the set of such integers n has asymptotic density one. We also determine all ordinary integers which are not divisible by any fifth power of a prime. Video. For a video summary of this paper, please visit http://youtu.be/UeIMWjRFUnA. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2014_02_023.pdf 268KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:1次