期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:104
A lower bound for the canonical height on elliptic curves over abelian extensions
Article
Silverman, JH
关键词: elliptic curve;    canonical height;    Lehmer conjecture;   
DOI  :  10.1016/j.jnt.2003.07.001
来源: Elsevier
PDF
【 摘 要 】

Let E/K be an elliptic curve defined over a number field, let (h) over cap be the canonical height on E, and let K-ab/K be the maximal abelian extension of K. Extending work of M. Baker (IMRN 29 (2003) 1571-1582), we prove that there is a constant C(E/K) > 0 so that every nontorsion point P is an element of E(K-ab) satisfies (h) over cap (P) > C(E/K). (C) 2003 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2003_07_001.pdf 297KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次