期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:104 |
A lower bound for the canonical height on elliptic curves over abelian extensions | |
Article | |
Silverman, JH | |
关键词: elliptic curve; canonical height; Lehmer conjecture; | |
DOI : 10.1016/j.jnt.2003.07.001 | |
来源: Elsevier | |
【 摘 要 】
Let E/K be an elliptic curve defined over a number field, let (h) over cap be the canonical height on E, and let K-ab/K be the maximal abelian extension of K. Extending work of M. Baker (IMRN 29 (2003) 1571-1582), we prove that there is a constant C(E/K) > 0 so that every nontorsion point P is an element of E(K-ab) satisfies (h) over cap (P) > C(E/K). (C) 2003 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2003_07_001.pdf | 297KB | download |