期刊论文详细信息
| JOURNAL OF NUMBER THEORY | 卷:172 |
| New properties of the Lerch's transcendent | |
| Article | |
| Ferreira, E. M.1  Kohara, A. K.1  Sesma, J.2  | |
| [1] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil | |
| [2] Fac Ciencias, Dept Fis Teor, Zaragoza 50009, Spain | |
| 关键词: Lerch's transcendent; Hurwitz zeta function; Polylogarithms; | |
| DOI : 10.1016/j.jnt.2016.08.013 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
A new representation of the Lerch's transcendent Phi(z, s, a), valid for positive integer s = n = 1,2, ... and for z and a belonging to certain regions of the complex plane, is presented. It allows to write an equation relating Phi(z, n, a) and. Phi(1/z,n, 1 - a), which in turn provides an expansion of Phi(z, n, a) as a power series of 1/z, convergent for vertical bar z vertical bar > 1. (C) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jnt_2016_08_013.pdf | 236KB |
PDF