期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:202
Generalized Cullen numbers in linear recurrence sequences
Article
Bilu, Yuri1  Marques, Diego2  Togbe, Alain3 
[1] Univ Bordeaux 1, IMB, 351 Cours Liberat, F-33405 Talence, France
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[3] Purdue Univ Northwest, Dept Math Stat & Comp Sci, 1401 S,US 421, Westville, IN 46391 USA
关键词: Cullen numbers;    Linear forms in logarithms;    Linear recurrence sequence;    Diophantine equations;   
DOI  :  10.1016/j.jnt.2018.11.025
来源: Elsevier
PDF
【 摘 要 】

A Cullen number is a number of the form m2(m) +1, where m is a positive integer. In 2004; Luca and Stanica proved, among other things, that the largest Fibonacci number in the Cullen sequence is F-4 = 3. Actually, they searched for generalized Cullen numbers among some binary recurrence sequences. In this paper, we will work on higher order recurrence sequences. For a given linear recurrence (G(n))(n), under weak assumptions, and a given polynomial T(x) is an element of Z[x], we shall prove that if G(n) = mx(m) + T(x), then m << 1 and n << log vertical bar x vertical bar, where the implied constants depend only on (G(n))(n), and T(x). (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2018_11_025.pdf 663KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:1次