期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:129 |
Periods of orbits modulo primes | |
Article | |
Akbary, Amir1  Ghioca, Dragos1  | |
[1] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada | |
关键词: Artin's conjecture; Algebraic dynamics; Drinfeld modules; | |
DOI : 10.1016/j.jnt.2009.03.007 | |
来源: Elsevier | |
【 摘 要 】
Let S be a monoid of endomorphisms of a quasiprojective variety V defined over a global field K We prove a lower bound for the size of the reduction modulo places of K of the orbit of any point alpha is an element of V(K) under the action of the endomorphisms from S We also prove a similar result in the context of Drinfeld modules Our results may be considered as dynamical variants of Artin's primitive root conjecture (C) 2009 Elsevier Inc All rights reserved
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2009_03_007.pdf | 207KB | download |