期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:176
An infinite family of pairs of imaginary quadratic fields with both class numbers divisible by five
Article
Aoki, Miho1  Kishi, Yasuhiro2 
[1] Shimane Univ, Interdisciplinary Fac Sci & Engn, Dept Math, Matsue, Shimane 6908504, Japan
[2] Aichi Univ Educ, Fac Educ, Dept Math, Kariya, Aichi 4488542, Japan
关键词: Quadratic fields;    Quartic fields;    Class numbers;   
DOI  :  10.1016/j.jnt.2016.12.007
来源: Elsevier
PDF
【 摘 要 】

We construct a new infinite family of pairs of imaginary quadratic fields with both class numbers divisible by five. Let n be a positive integer that satisfy n 3 (mod 500) and n not equivalent to 0 (mod 3). We prove that 5 divides the class numbers of both Q(root 2 - F-n) and Q(root 5(2 - F-n)) where Fn, is the nth Fibonacci number. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2016_12_007.pdf 307KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次