期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:196
Direct and inverse theorems on signed sumsets of integers
Article
Bhanja, Jagannath1  Pandey, Ram Krishna1 
[1] Indian Inst Technol, Dept Math, Roorkee 247667, Uttarakhand, India
关键词: Sumset;    Signed sumset;    Direct and inverse problems;   
DOI  :  10.1016/j.jnt.2018.09.005
来源: Elsevier
PDF
【 摘 要 】

Let G be an additive abelian group and h be a positive integer. For a nonempty finite subset A = {a(0), a(1), ... , a(k-1)} of G, we let h +/- A := {Sigma(k-1)(i=0) lambda(i)a(i) : (lambda(0), ... , lambda(k-1)) is an element of Z(k), Sigma(k-1)(i=0) vertical bar lambda(i)vertical bar = h}, be the h-fold signed sumset of A. The direct problem for the signed sumset h +/- A is to find a nontrivial lower bound for vertical bar h +/- A vertical bar in terms of vertical bar A vertical bar. The inverse problem for h +/- A is to determine the structure of the finite set A for which vertical bar h +/- A vertical bar is minimal. In this article, we solve both the direct and inverse problems for vertical bar h +/- A vertical bar, when A is a finite set of integers. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2018_09_005.pdf 644KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:1次