期刊论文详细信息
| JOURNAL OF NUMBER THEORY | 卷:208 |
| Some theorems on multiplicative orders modulo p on average | |
| Article | |
| Kim, Sungjin1  | |
| [1] Calif State Univ Northridge, Santa Monica Coll, Northridge, CA 91330 USA | |
| 关键词: Multiplicative order; Modulo p; Average; Central limit theorem; Divisor function; | |
| DOI : 10.1016/j.jnt.2019.07.024 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Let p be a prime, a >= 1, and l(a)(p) be the multiplicative order of a modulo p. We prove various theorems concerning the averages of l(a) (p) over p <= x and a <= y. We prove that these theorems hold for y > exp((alpha+epsilon) root log x) where alpha approximate to 3.42. This is an improvement over y > exp(c(1))root logx) with c(1) >= 12e(9) given in [S2]. We also provide the average of tau(l(a)(p)) over p <= x, a <= y, and y > exp((alpha + epsilon) root log x), where tau(n) is the divisor function Sigma(d/n)1. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jnt_2019_07_024.pdf | 446KB |
PDF