期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:208
Some theorems on multiplicative orders modulo p on average
Article
Kim, Sungjin1 
[1] Calif State Univ Northridge, Santa Monica Coll, Northridge, CA 91330 USA
关键词: Multiplicative order;    Modulo p;    Average;    Central limit theorem;    Divisor function;   
DOI  :  10.1016/j.jnt.2019.07.024
来源: Elsevier
PDF
【 摘 要 】

Let p be a prime, a >= 1, and l(a)(p) be the multiplicative order of a modulo p. We prove various theorems concerning the averages of l(a) (p) over p <= x and a <= y. We prove that these theorems hold for y > exp((alpha+epsilon) root log x) where alpha approximate to 3.42. This is an improvement over y > exp(c(1))root logx) with c(1) >= 12e(9) given in [S2]. We also provide the average of tau(l(a)(p)) over p <= x, a <= y, and y > exp((alpha + epsilon) root log x), where tau(n) is the divisor function Sigma(d/n)1. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2019_07_024.pdf 446KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次