期刊论文详细信息
| JOURNAL OF NUMBER THEORY | 卷:184 |
| Divisibility on the sequence of perfect squares minus one: The gap principle | |
| Article | |
| Tsz Ho Chan1  Choi, Stephen2  Lam, Peter Cho-Ho2  | |
| [1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA | |
| [2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada | |
| 关键词: Gap principle; Pell's equations; Quadratic congruence; | |
| DOI : 10.1016/j.jnt.2017.08.032 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
In this paper, we consider a gap principle when a(2) - 1 vertical bar b(2) - 1 vertical bar c(2) - 1 with 1 < a < b < c. As a byproduct, we are led to determine the complete set of pairs of positive integers 1 <= u <= v <= x such that u vertical bar v(2) - 1 and v vertical bar u(2) - 1 and the diophantine equation u(2) + v(2) 1 = muv. We also generalize our main theorems to the polynomial f (n) = A(n + B)(2) + C. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jnt_2017_08_032.pdf | 231KB |
PDF