期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:223
Inverse problems for minimal complements and maximal supplements
Article
Alon, Noga1,2,3  Kravitz, Noah4  Larson, Matt5 
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Tel Aviv Univ, Sch Math, IL-69978 Tel Aviv, Israel
[3] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
[4] Zoom Univ Yale, Grace Hopper Coll, New Haven, CT 06511 USA
[5] Dept Math, 450 Jane Stanford Way, Stanford, CA 94305 USA
关键词: Minimal complement;    Additive combinatorics;    Probabilistic combinatorics;   
DOI  :  10.1016/j.jnt.2020.10.009
来源: Elsevier
PDF
【 摘 要 】

Given a subset W of an abelian group G, a subset C is called an additive complement for W if W + C = G; if, moreover, no proper subset of C has this property, then we say that C is a minimal complement for W. It is natural to ask which subsets C can arise as minimal complements for some W. We show that in a finite abelian group G, every non-empty subset C of size vertical bar C vertical bar <= 2(2)/(3)vertical bar G vertical bar(1/3)/((3e log vertical bar G vertical bar)(2/3) is a minimal complement for some W. As a corollary, we deduce that every finite non-empty subset of an infinite abelian group is a minimal complement. We also derive several analogous results for dual problems about maximal supplements. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2020_10_009.pdf 386KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次