期刊论文详细信息
| JOURNAL OF NUMBER THEORY | 卷:153 |
| On the coefficients of power sums of arithmetic progressions | |
| Article | |
| Bazso, Andras1,2  Mezo, Istvan3  | |
| [1] Hungarian Acad Sci, MTA DE Res Grp Equat Funct & Curves, Inst Math, H-4010 Debrecen, Hungary | |
| [2] Univ Debrecen, H-4010 Debrecen, Hungary | |
| [3] Nanjing Univ Informat Sci & Technol, Dept Math, Nanjing, Jiangsu, Peoples R China | |
| 关键词: Arithmetic progressions; Power sums; Stirling numbers; r-Whitney numbers; Bernoulli polynomials; | |
| DOI : 10.1016/j.jnt.2015.01.019 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We investigate the coefficients of the polynomial S-m,r(n)(l) = r(n) + (m + r)(n) + (2m + r)(n) + ... + ((l - 1)m + r)(n). We prove that these can be given in terms of Stirling numbers of the first kind and r-Whitney numbers of the second kind. Moreover, we prove a necessary and sufficient condition for the integrity of these coefficients. (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jnt_2015_01_019.pdf | 248KB |
PDF