期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:153
On the coefficients of power sums of arithmetic progressions
Article
Bazso, Andras1,2  Mezo, Istvan3 
[1] Hungarian Acad Sci, MTA DE Res Grp Equat Funct & Curves, Inst Math, H-4010 Debrecen, Hungary
[2] Univ Debrecen, H-4010 Debrecen, Hungary
[3] Nanjing Univ Informat Sci & Technol, Dept Math, Nanjing, Jiangsu, Peoples R China
关键词: Arithmetic progressions;    Power sums;    Stirling numbers;    r-Whitney numbers;    Bernoulli polynomials;   
DOI  :  10.1016/j.jnt.2015.01.019
来源: Elsevier
PDF
【 摘 要 】

We investigate the coefficients of the polynomial S-m,r(n)(l) = r(n) + (m + r)(n) + (2m + r)(n) + ... + ((l - 1)m + r)(n). We prove that these can be given in terms of Stirling numbers of the first kind and r-Whitney numbers of the second kind. Moreover, we prove a necessary and sufficient condition for the integrity of these coefficients. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2015_01_019.pdf 248KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次