JOURNAL OF NUMBER THEORY | 卷:185 |
Small prime solutions of a nonlinear equation | |
Article | |
Liu, Zhixin1  | |
[1] Tianjin Univ, Sch Math, Tianjin 300072, Peoples R China | |
关键词: Small prime; Waring-Goldbach problem; Circle method; | |
DOI : 10.1016/j.jnt.2017.09.014 | |
来源: Elsevier | |
【 摘 要 】
Let a(1), ... , a(4) be non-zero integers and n any integer. Suppose that a(1), ... , a(4) and n satisfy some related conditions. In this paper we prove that (i) if a(j) are not all of the same sign, then the equation a(1)p(1) + a(2)p(2)(2)+a(3)p(3)(2)+a(4)p(4)(2)=n has prime solutions satisfying max{p(1),p(2)(2),p(3)(2),p(4)(2)} << I vertical bar n vertical bar + max{vertical bar a(j)vertical bar}(14+epsilon); (ii) if all a(j) are positive and n >> max{vertical bar a(j)vertical bar}(15+epsilon), then the equation a(1)p(1) + a(2)p(2)(2) + a(3)p(3)(2) + a(4)p(4)(2) = n is soluble in primes p(j). (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2017_09_014.pdf | 243KB | download |