期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:142
An exact degree for multivariate special polynomials
Article
Perkins, Rudolph Bronson
关键词: Special polynomials;    Function field arithmetic;    Pellarin's L-series;    Positive characteristic;   
DOI  :  10.1016/j.jnt.2014.02.022
来源: Elsevier
PDF
【 摘 要 】

We introduce certain special polynomials in an arbitrary number of indeterminates over a finite field. These polynomials generalize the special polynomials associated to the Goss zeta function and Goss-Dirichlet L-functions over the ring of polynomials in one indeterminate over a finite field and also capture the special values at non-positive integers of L-series associated to Drinfeld modules over Tate algebras defined over the same ring. We compute the exact degree in to of these special polynomials and show that this degree is an invariant for a natural action of Goss' group of digit permutations. Finally, we characterize the vanishing of these multivariate special polynomials at t(0) = 1. This gives rise to a notion of trivial zeros for our polynomials generalizing that of the Goss zeta function mentioned above. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2014_02_022.pdf 270KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:0次