期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:211
Asymptotic lower bound of class numbers along a Galois representation
Article
Ohshita, Tatsuya1 
[1] Keio Univ, Fac Sci & Technol, Dept Math, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
关键词: Class number;    Galois representation;    Elliptic curve;    Abelian variety;    Selmer group;    Mordell-Weil group;    Iwasawa theory;   
DOI  :  10.1016/j.jnt.2019.09.024
来源: Elsevier
PDF
【 摘 要 】

Let T be a free Z(p)-module of finite rank equipped with a continuous Z(p)-linear action of the absolute Galois group of a number field K satisfying certain conditions. In this article, by using a Selmer group corresponding to T, we give a lower bound of the additive p-adic valuation of the class number of K-n which is the Galois extension field of K fixed by the stabilizer of T/p(n)T. By applying this result, we prove an asymptotic inequality which describes an explicit lower bound of the class numbers along a tower K(A[p(infinity)])/K for a given abelian variety A with certain conditions in terms of the Mordell-Weil group. We also prove another asymptotic inequality for the cases when A is a Hilbert Blumenthal or CM abelian variety. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2019_09_024.pdf 379KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:2次