期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:212
Distribution of signs of Karatsuba's and generalized Davenport-Heilbronn Z-functions
Article
Das, Mithun Kumar1  Pujahari, Sudhir2 
[1] Harish Chandra Res Inst HBNI, Chatnag Rd, Allahabad 211019, Uttar Pradesh, India
[2] Univ Hong Kong, Pokfulam, Hong Kong, Peoples R China
关键词: Dirichlet L-series;    Davenport-Heilbronn function;    Hardy's Z-function;    Karatsuba's Z-function;   
DOI  :  10.1016/j.jnt.2019.11.012
来源: Elsevier
PDF
【 摘 要 】

For 1 <= i <= r, let chi i be primitive Dirichlet characters modulo qi and Z(t, chi i) be the Z-function corresponding to the Dirichlet L-series L(s, chi i). Let Omega(t) be a real linear combination of Z(t, chi i). Since Z(t, chi i) is real for real t, Omega(t) is real for real t. In this paper, we show that the Lebesgue measure of the set, where the functional values of Omega(t) is positive or negative in the interval [T, 2T] is at least T/r(2) . We also study the Lebesgue measure of the set that the certain complex linear combinations of Z(t, chi i) takes positive or negative values respectively. In particular, we study the distribution of signs of the Z-function correspond to the Davenport-Heilbronn function. Moreover, we prove that for sufficiently large T, the generalized Davenport-Heilbronn function has at least H(log T)(2/phi(q)-is an element of) odd order zeros along the critical line on the interval [T,T + H]. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2019_11_012.pdf 555KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:1次