期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:228
Geometry of biquadratic and cyclic cubic log-unit lattices
Article
Tellez, Fernando Azpeitia1  Powell, Christopher2  Sharif, Shahed1 
[1] Calif State Univ San Marcos, San Marcos, TX 92096 USA
[2] BAE Syst Inc, Arlington, TX USA
关键词: Units in number fields;    Lattices;    Log embedding;   
DOI  :  10.1016/j.jnt.2021.04.007
来源: Elsevier
PDF
【 摘 要 】

By Dirichlet's Unit Theorem, under the log embedding the units in the ring of integers of a number field form a lattice, called the log-unit lattice. We investigate the geometry of these lattices when the number field is a biquadratic or cyclic cubic extension of Q. In the biquadratic case, we determine when the log-unit lattice is orthogonal. In the cyclic cubic case, we show that the log-unit lattice is always equilateral triangular. (c) 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2021_04_007.pdf 385KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次