期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:214
Abelian periods of factors of Sturmian words
Article
Peltomaki, Jarkko1,2,3 
[1] Univ Turku, Turku Coll Sci & Med TCSM, Turku, Finland
[2] Turku Ctr Comp Sci TUCS, Turku, Finland
[3] Univ Turku, Dept Math & Stat, Turku, Finland
关键词: Sturmian word;    Continued fraction;    Abelian equivalence;    Abelian period;    Singular word;   
DOI  :  10.1016/j.jnt.2020.04.007
来源: Elsevier
PDF
【 摘 要 】

We study the abelian period sets of Sturmian words, which are codings of irrational rotations on a one-dimensional torus. The main result states that the minimum abelian period of a factor of a Sturmian word of angle alpha with continued fraction expansion [0; alpha(1), alpha(2), ...] is either tq(k) with 1 <= t <= a(k)(+1) (a multiple of a denominator q(k) of a convergent of alpha) or q(k)(,l) (a denominator q(k,l) of a semiconvergent of alpha). This result generalizes a result of Fici et al. stating that the abelian period set of the Fibonacci word is the set of Fibonacci numbers. A characterization of the Fibonacci word in terms of its abelian period set is obtained as a corollary. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2020_04_007.pdf 642KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:1次